众多学者对超级AIS接管世界的可能性进行了深入的研究。本文重点介绍了超级掌权的前提下的多ai竞争方案。首先,本文指出了支持单ai统治的现有参数的缺陷,并提出了有利于多AI竞争的论点。然后,文章得出结论,多AI竞争情况是不可忽略的可能性。然后,注意将多AI竞争比单个AI掌权的情况更好地对人类的整体利益更好。在分析了最佳,最坏和中间场景之后,该文章得出结论,多AI竞争对人类更有利。最后,考虑到与多个AI的最佳情况相关的因素,该文章对AI开发中当前的计划提出了一些建议。
translated by 谷歌翻译
对象攻击是对象检测的现实世界中可行的。然而,大多数以前的作品都试图学习应用于对象的本地“补丁”到愚蠢的探测器,这在斜视视角变得较低。为了解决这个问题,我们提出了致密的提案攻击(DPA)来学习探测器的单件,物理和针对性的对抗性伪装。伪装是一体的,因为它们是作为一个物体的整体生成的,因为当在任意观点和不同的照明条件下拍摄时,它们保持对抗性,并且由于它们可能导致探测器被定义为特定目标类别的检测器。为了使生成的伪装在物理世界中稳健,我们介绍了改造的组合来模拟物理现象。此外,为了改善攻击,DPA同时攻击固定建议中的所有分类。此外,我们使用Unity Simulation Engine构建虚拟3D场景,以公平地和可重复地评估不同的物理攻击。广泛的实验表明,DPA优于最先进的方法,并且对于任何物体而言,它是通用的,并且对现实世界的广泛性良好,对安全关键的计算机视觉系统构成潜在的威胁。
translated by 谷歌翻译
基于知识的视觉问题的问题涉及除了图像内容之外还涉及需要外部知识的问题。这些知识通常有各种形式,包括视觉,文本和致辞知识。使用更多知识来源,增加了检索更无关紧要或嘈杂的事实的可能性,使其充实并找到答案的挑战。为了解决这一挑战,我们使用外部知识(MAVEX)提出了多模态答案验证,其中该想法是根据答案特定知识检索验证一组有希望的答案候选者。而不是在大多数现有方法中搜索大量不相关的事实中的答案,Mavex旨在学习如何从嘈杂来源中提取相关知识,这是对每个答复候选者的信任,以及如何使用候选者那个来源。除了以维基百科句子和概念概念的形式之外,我们的多模态设置是第一个利用外部视觉知识(使用谷歌搜索的图像)。我们的实验与OK-VQA是一个具有挑战性的知识VQA数据集,证明了MAVEX实现了新的最先进的结果。我们的代码可在https://github.com/jialinwu17/mavex提供
translated by 谷歌翻译
How to learn an effective reinforcement learning-based model for control tasks from high-level visual observations is a practical and challenging problem. A key to solving this problem is to learn low-dimensional state representations from observations, from which an effective policy can be learned. In order to boost the learning of state encoding, recent works are focused on capturing behavioral similarities between state representations or applying data augmentation on visual observations. In this paper, we propose a novel meta-learner-based framework for representation learning regarding behavioral similarities for reinforcement learning. Specifically, our framework encodes the high-dimensional observations into two decomposed embeddings regarding reward and dynamics in a Markov Decision Process (MDP). A pair of meta-learners are developed, one of which quantifies the reward similarity and the other quantifies dynamics similarity over the correspondingly decomposed embeddings. The meta-learners are self-learned to update the state embeddings by approximating two disjoint terms in on-policy bisimulation metric. To incorporate the reward and dynamics terms, we further develop a strategy to adaptively balance their impacts based on different tasks or environments. We empirically demonstrate that our proposed framework outperforms state-of-the-art baselines on several benchmarks, including conventional DM Control Suite, Distracting DM Control Suite and a self-driving task CARLA.
translated by 谷歌翻译
Detecting personal health mentions on social media is essential to complement existing health surveillance systems. However, annotating data for detecting health mentions at a large scale is a challenging task. This research employs a multitask learning framework to leverage available annotated data from a related task to improve the performance on the main task to detect personal health experiences mentioned in social media texts. Specifically, we focus on incorporating emotional information into our target task by using emotion detection as an auxiliary task. Our approach significantly improves a wide range of personal health mention detection tasks compared to a strong state-of-the-art baseline.
translated by 谷歌翻译
The health mention classification (HMC) task is the process of identifying and classifying mentions of health-related concepts in text. This can be useful for identifying and tracking the spread of diseases through social media posts. However, this is a non-trivial task. Here we build on recent studies suggesting that using emotional information may improve upon this task. Our study results in a framework for health mention classification that incorporates affective features. We present two methods, an intermediate task fine-tuning approach (implicit) and a multi-feature fusion approach (explicit) to incorporate emotions into our target task of HMC. We evaluated our approach on 5 HMC-related datasets from different social media platforms including three from Twitter, one from Reddit and another from a combination of social media sources. Extensive experiments demonstrate that our approach results in statistically significant performance gains on HMC tasks. By using the multi-feature fusion approach, we achieve at least a 3% improvement in F1 score over BERT baselines across all datasets. We also show that considering only negative emotions does not significantly affect performance on the HMC task. Additionally, our results indicate that HMC models infused with emotional knowledge are an effective alternative, especially when other HMC datasets are unavailable for domain-specific fine-tuning. The source code for our models is freely available at https://github.com/tahirlanre/Emotion_PHM.
translated by 谷歌翻译
In this paper we revisit endless online level generation with the recently proposed experience-driven procedural content generation via reinforcement learning (EDRL) framework, from an observation that EDRL tends to generate recurrent patterns. Inspired by this phenomenon, we formulate a notion of state space closure, which means that any state that may appear in an infinite-horizon online generation process can be found in a finite horizon. Through theoretical analysis we find that though state space closure arises a concern about diversity, it makes the EDRL trained on a finite-horizon generalised to the infinite-horizon scenario without deterioration of content quality. Moreover, we verify the quality and diversity of contents generated by EDRL via empirical studies on the widely used Super Mario Bros. benchmark. Experimental results reveal that the current EDRL approach's ability of generating diverse game levels is limited due to the state space closure, whereas it does not suffer from reward deterioration given a horizon longer than the one of training. Concluding our findings and analysis, we argue that future works in generating online diverse and high-quality contents via EDRL should address the issue of diversity on the premise of state space closure which ensures the quality.
translated by 谷歌翻译
Evaluating neural network performance is critical to deep neural network design but a costly procedure. Neural predictors provide an efficient solution by treating architectures as samples and learning to estimate their performance on a given task. However, existing predictors are task-dependent, predominantly estimating neural network performance on image classification benchmarks. They are also search-space dependent; each predictor is designed to make predictions for a specific architecture search space with predefined topologies and set of operations. In this paper, we propose a novel All-in-One Predictor (AIO-P), which aims to pretrain neural predictors on architecture examples from multiple, separate computer vision (CV) task domains and multiple architecture spaces, and then transfer to unseen downstream CV tasks or neural architectures. We describe our proposed techniques for general graph representation, efficient predictor pretraining and knowledge infusion techniques, as well as methods to transfer to downstream tasks/spaces. Extensive experimental results show that AIO-P can achieve Mean Absolute Error (MAE) and Spearman's Rank Correlation (SRCC) below 1% and above 0.5, respectively, on a breadth of target downstream CV tasks with or without fine-tuning, outperforming a number of baselines. Moreover, AIO-P can directly transfer to new architectures not seen during training, accurately rank them and serve as an effective performance estimator when paired with an algorithm designed to preserve performance while reducing FLOPs.
translated by 谷歌翻译
Predicting neural architecture performance is a challenging task and is crucial to neural architecture design and search. Existing approaches either rely on neural performance predictors which are limited to modeling architectures in a predefined design space involving specific sets of operators and connection rules, and cannot generalize to unseen architectures, or resort to zero-cost proxies which are not always accurate. In this paper, we propose GENNAPE, a Generalized Neural Architecture Performance Estimator, which is pretrained on open neural architecture benchmarks, and aims to generalize to completely unseen architectures through combined innovations in network representation, contrastive pretraining, and fuzzy clustering-based predictor ensemble. Specifically, GENNAPE represents a given neural network as a Computation Graph (CG) of atomic operations which can model an arbitrary architecture. It first learns a graph encoder via Contrastive Learning to encourage network separation by topological features, and then trains multiple predictor heads, which are soft-aggregated according to the fuzzy membership of a neural network. Experiments show that GENNAPE pretrained on NAS-Bench-101 can achieve superior transferability to 5 different public neural network benchmarks, including NAS-Bench-201, NAS-Bench-301, MobileNet and ResNet families under no or minimum fine-tuning. We further introduce 3 challenging newly labelled neural network benchmarks: HiAML, Inception and Two-Path, which can concentrate in narrow accuracy ranges. Extensive experiments show that GENNAPE can correctly discern high-performance architectures in these families. Finally, when paired with a search algorithm, GENNAPE can find architectures that improve accuracy while reducing FLOPs on three families.
translated by 谷歌翻译
We consider the nonstochastic multi-agent multi-armed bandit problem with agents collaborating via a communication network with delays. We show a lower bound for individual regret of all agents. We show that with suitable regularizers and communication protocols, a collaborative multi-agent \emph{follow-the-regularized-leader} (FTRL) algorithm has an individual regret upper bound that matches the lower bound up to a constant factor when the number of arms is large enough relative to degrees of agents in the communication graph. We also show that an FTRL algorithm with a suitable regularizer is regret optimal with respect to the scaling with the edge-delay parameter. We present numerical experiments validating our theoretical results and demonstrate cases when our algorithms outperform previously proposed algorithms.
translated by 谷歌翻译